
Utility functions...

fastcos (generic function with 1 method)

fastatan (generic function with 1 method)

Kirchhoff-Fresnel diffraction integral

Aperture functions
Shape function for apertures. You can test the different functions at the end of this section.

Shape functions are used in the Setup struct; kwargs can be given as a dictionary.

circular (generic function with 1 method)

double_circle (generic function with 1 method)

import CairoMakie as CM⋅

CM.activate!(type="png")⋅

md"""**Utility functions...**"""⋅

Make this use cos() if your angles are not very small.
function fastcos(x)
 1 - x^2/2
end

⋅
⋅
⋅
⋅

function fastatan(x)
 x-x^3/3
end

⋅
⋅
⋅

md"""# Kirchhoff-Fresnel diffraction integral"""⋅

md"""## Aperture functions
​
Shape function for apertures. You can test the different functions at the end of this
section.
​
Shape functions are used in the Setup struct; kwargs can be given as a dictionary."""

⋅
⋅
⋅

⋅
⋅

function circular(x, y; radius=1000e-6)::Float16
 (x^2+y^2) <= radius^2 ? 1 : 0
end

⋅
⋅
⋅

function double_circle(x, y; radius=1000e-6, dist=1000e-6)::Float16
 d = dist/2
 rsq = radius^2
 ysq = y^2

⋅
⋅
⋅
⋅

quadratic (generic function with 1 method)

slit (generic function with 1 method)

double_slit (generic function with 1 method)

smallgrate (generic function with 1 method)

cross (generic function with 1 method)

spikes (generic function with 1 method)

from_raster (generic function with 1 method)

grating2d (generic function with 1 method)

 (((x-d)^2+ysq) <= rsq || ((x+d)^2+ysq) <= rsq) ? 1 : 0
end

⋅
⋅

function quadratic(x, y; side=1000e-6)::Float16
 (-side <= x && x <= side && -side <= y && y <= side) ? 1 : 0
end

⋅
⋅
⋅

function slit(x, y; width=800e-6, height=1000)
 (-width/2 <= x && x <= width/2 && -height <= y && y <= height) ? 1 : 0
end

⋅
⋅
⋅

function double_slit(x, y; width=800e-6, off=1000e-6, height=1000)
 (-width/2-off <= x && x <= width/2-off && -height <= y && y <= height) || (-
width/2+off <= x && x <= width/2+off && -height <= y && y <= height) ? 1 : 0
end

⋅
⋅

⋅

function smallgrate(x, y; width=100e-6, off=200e-6, height=1000)
 s = abs(rem(x, off+width))
 ((x < 0 && s <= width) || (x >= 0 && s >= off)) ? 1 : 0
end

⋅
⋅
⋅
⋅

function cross(x, y; width=300e6)
 (abs(x) <= width/2 || abs(y) <= width/2) ? 0 : 1
end

⋅
⋅
⋅

function spikes(x, y; width=100e-6, radius=1000e-6)
 circular(x, y, radius=radius) == 1 && cross(x, y, width=width) == 1
end

⋅
⋅
⋅

#circular_fft = convert.(Float16, FileIO.load("circle.png"))⋅

function from_raster(shape, maxdim)
 maxix = size(shape, 1)
 off = convert(Int, trunc((maxix)/2))
 return function(x,y)
 i, j = convert(Int, trunc(maxix*x/maxdim)), convert(Int,
trunc(maxix*y/maxdim))
 shape[min(i+off+1, maxix), min(j+off+1, maxix)]
 end
end

⋅
⋅
⋅
⋅
⋅

⋅
⋅
⋅

function grating2d(x, y; width=100e-6, off=200e-6)
 s = abs(rem(x, off+width))
 a = ((x < 0 && s <= width) || (x >= 0 && s >= off))
 t = abs(rem(y, off+width))
 b = ((y < 0 && t <= width) || (y >= 0 && t >= off))

⋅
⋅
⋅
⋅
⋅

invertshape (generic function with 1 method)

sample_shape (generic function with 1 method)

show_shape (generic function with 1 method)

0.3

 a && b
end

⋅
⋅

function invertshape(s)
 if s <= 0.1
 1
 else
 0
 end
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

function sample_shape(f; dim=OUTER_DIM, res=100)::Tuple{LinRange{Float64},
Matrix{Float16}}
 field = zeros(Float16, res, res)
 xs = ys = LinRange(-dim/2, dim/2, res)
 for (i, x) = enumerate(xs)
 for (j, y) = enumerate(ys)
 field[i,j] = f(x, y)
 end
 end
 xs, field
end

⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function show_shape(f; dim=OUTER_DIM, scan=OUTER_DIM/10)
 xs, field = sample_shape(f, dim=dim, res=convert(Int, div(dim,scan)))
 fig = CM.Figure(resolution=(440,400))
 CM.Axis(fig[1,1])
 CM.heatmap!(xs, xs, field)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅

begin
 # These constants are just used for testing the aperture functions.
 const OUTER_DIM = .002
 const SCREEN_DIM = 0.3
end

⋅
⋅
⋅
⋅
⋅

Integral calculation
We integrate across the aperture, sampling both aperture and screen area.

Before doing that, we add some structs for configuring our calculations.

Source

show_shape((x,y) -> grating2d(x, y), dim=OUTER_DIM, scan=OUTER_DIM/200)⋅

md"""## Integral calculation
​
We integrate across the aperture, sampling both aperture and screen area.
​
Before doing that, we add some structs for configuring our calculations."""

⋅
⋅
⋅
⋅
⋅

Base.@kwdef struct Source
 x::Float64 = 0
 y::Float64 = 0
 z::Float64
end

⋅
⋅
⋅
⋅
⋅

struct Setup
 # (negative) position of source, left of aperture
 source::Vector{Source}
 # aperture shape function
 aperture::Function
 # aperture config
 aperture_kwargs::Dict{Symbol, Float64}
 # distance to screen
 screen_pos::Float64
 # wavelength
 lambda::Float64

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

default_setup
Setup([Source(0.0, -0.0, -30.0)], double_slit (generic function with 1 method), Dict()

 =

default_scan_param ScanParam(0.005, 5.0e-5, 0.04, 0.0004) =

Point source to screen
calculate_integral() assumes one or more point sources and a screen orthogonal to the

(geometric) beam. It calculates the image on the screen, which is shown below.

calculate_integral (generic function with 1 method)

end⋅

Distance of source, shape function, shape parameters, distance to screen, wavelength
default_setup = Setup([Source(z=-30, y=-.0)],
 double_slit, Dict(),
 30, 500e-9)

⋅
⋅
⋅
⋅

struct ScanParam
 aperture_size::Float64
 aperture::Float64
 screen_size::Float64
 screen::Float64
end

⋅
⋅
⋅
⋅
⋅
⋅

default_scan_param = ScanParam(
 # Aperture scan size and scan step, in m, depends on aperture function
 0.005, .005/100,
 # Screen size and scan step in m.
 .04, .04/100)

⋅
⋅
⋅
⋅
⋅

md"""### Point source to screen
​
`calculate_integral()` assumes one or more point sources and a screen orthogonal to
the (geometric) beam. It calculates the image on the screen, which is shown below."""

⋅
⋅
⋅

function calculate_integral(setup::Setup; scan_param::ScanParam=default_scan_param)

 screendim = convert(Int, div(scan_param.screen_size, scan_param.screen))
 apdim = convert(Int, div(scan_param.aperture_size, scan_param.aperture))
 screen = zeros(Complex{Float64}, screendim, screendim)

 delta = scan_param.aperture_size / apdim

 all_aperture_coords = ((x,y)
 for x = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim)
 , y = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim))

 all_screen_coords = ((i, x, j, y)
 for (i, x) = enumerate(LinRange(
 -scan_param.screen_size/2, scan_param.screen_size/2, screendim))
 , (j, y) = enumerate(LinRange(
 -scan_param.screen_size/2, scan_param.screen_size/2, screendim)))
 k = 2pi/setup.lambda
​
 all_screen_coords = collect(all_screen_coords)
 count = 0

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Check the actual aperture used:

​
 @time begin for (apx, apy) = all_aperture_coords
 weight = setup.aperture(apx, apy; setup.aperture_kwargs...)
 if weight == 0
 continue
 end
 count += length(all_screen_coords)
 cdist = sqrt(apx^2+apy^2)
 dists = ((atan(sum(((s.x, s.y) .- (apx, apy)).^2)/abs(s.z)),
 sqrt(sum(((apx,apy,0) .- (s.x, s.y, s.z)).^2)))
 for s = setup.source)
 sourceterms = [(fastcos(alpha), exp(-im * k * R)/R) for (alpha, R) = dists]

 Threads.@threads for (i, scx, j, scy) = all_screen_coords
 pointdist = sqrt((apx-scx)^2 + (apy-scy)^2)
 r = sqrt(pointdist^2 + setup.screen_pos^2)
 beta = fastatan(pointdist / abs(setup.screen_pos))
 fcb = fastcos(beta)
 term = exp(-im*k*r)/r * sum(
 ((fcb+fca)/2 * t
 for (fca, t) = sourceterms))

 screen[i, j] += weight * term * delta^2/(im*setup.lambda)
 end
 end
 end
 println("calculate_integral: $count iterations")
 abs.(screen).^2, LinRange(-scan_param.screen_size/2, scan_param.screen_size/2,
screendim)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

md"""**Check the actual aperture used:**"""⋅

show_shape((x,y) -> default_setup.aperture(x, y; default_setup.aperture_kwargs...),
dim=default_scan_param.aperture_size, scan=default_scan_param.aperture)

⋅

plot_diffraction (generic function with 1 method)

Show diffraction image as a heatmap with a crosssection (by default: along the middle, in x-
orientation)

Fraunhofer Integral

calculate_fraunhofer_integral (generic function with 1 method)

function plot_diffraction()
 screen, coords = calculate_integral(default_setup, scan_param=default_scan_param);
 fig = CM.Figure(resolution=(1300, 650))
 CM.Axis(fig[1,1])
 CM.heatmap!(coords, coords, (screen))
 axh = CM.Axis(fig[1, 2])
 axv = CM.Axis(fig[1,2], xaxisposition=:top, yaxisposition=:right)
 mid = div(size(screen)[1], 2)
 CM.lines!(axh, coords, view(screen, :, mid)/maximum(view(screen, :, mid)),
 color=:green)
 CM.lines!(axv, view(screen, mid, :)/maximum(view(screen, mid, :)), coords,
 color=:red)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

md"""**Show diffraction image as a heatmap with a crosssection (by default: along the
middle, in x-orientation)**"""

⋅

plot_diffraction()⋅

md"""## Fraunhofer Integral"""⋅

function calculate_fraunhofer_integral(setup::Setup;
scan_param::ScanParam=default_scan_param)

 screendim = convert(Int, div(scan_param.screen_size, scan_param.screen))

⋅

⋅
⋅

plot_fraunhofer_diffraction (generic function with 1 method)

 apdim = convert(Int, div(scan_param.aperture_size, scan_param.aperture))
 screen = zeros(Complex{Float64}, screendim, screendim)
 delta = scan_param.aperture_size / apdim

 all_aperture_coords = ((x,y)
 for x = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim)
 , y = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim))

 all_screen_coords = ((i, x, j, y)
 for (i, x) = enumerate(LinRange(
 -scan_param.screen_size/2, scan_param.screen_size/2, screendim))
 , (j, y) = enumerate(LinRange(
 -scan_param.screen_size/2, scan_param.screen_size/2, screendim)))
 k = 2pi/setup.lambda
​
 all_screen_coords = collect(all_screen_coords)
 count = 0
​
 @time begin for (apx, apy) = all_aperture_coords
 if setup.aperture(apx, apy; setup.aperture_kwargs...) < 0.1
 continue
 end
 count += length(all_screen_coords)

 Threads.@threads for (i, scx, j, scy) = all_screen_coords
 #l, m = (sin(fastatan((scx-apx)/setup.screen_pos)),
 # sin(fastatan((scy-apy)/setup.screen_pos)))
 l, m = scx/setup.screen_pos, scy/setup.screen_pos
 term = exp(-im*k*(l*apx + m*apy))
 screen[i, j] += term * delta^2
 end
 end
 end
 println("calculate_fraunhofer_integral: $count iterations")
 abs.(screen).^2, LinRange(-scan_param.screen_size/2, scan_param.screen_size/2,
screendim)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

⋅

function plot_fraunhofer_diffraction()
 screen, coords = calculate_fraunhofer_integral(default_setup,
 scan_param=default_scan_param);
 fig = CM.Figure(resolution=(1300, 650))
 CM.Axis(fig[1,1])
 CM.heatmap!(coords, coords, (screen))
 axh = CM.Axis(fig[1, 2])
 axv = CM.Axis(fig[1,2], xaxisposition=:top, yaxisposition=:right)
 mid = div(size(screen)[1], 2)
 CM.lines!(axh, coords, view(screen, :, mid)/maximum(view(screen, :, mid)),
 color=:green)
 CM.lines!(axv, view(screen, mid, :)/maximum(view(screen, mid, :)), coords,
 color=:red)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Diffraction pattern on plane
Here we calculate the intensities along a plane containing the (geometric) beam as it travels towards
the screen.

The plane is configured in the Plane struct, which determines the rotation angle of the plane around
the geometric beam axis, as well as the width and length of the plane.

Below we link these values with the aperture and screen settings used above, so that we always see
the pattern on the way to the screen.

calculate_plane_integral (generic function with 1 method)

plot_fraunhofer_diffraction()⋅

md"""### Diffraction pattern on plane
​
Here we calculate the intensities along a plane containing the (geometric) beam as it
travels towards the screen.
​
The plane is configured in the `Plane` struct, which determines the rotation angle of
the plane around the geometric beam axis, as well as the width and length of the
plane.
​
Below we link these values with the aperture and screen settings used above, so that
we always see the pattern on the way to the screen.
"""

⋅
⋅
⋅

⋅
⋅

⋅
⋅

⋅

struct Plane
 # 0 degrees = x plane
 angle::Float64
 width::Float64
 wscan::Float64
 length::Float64
 lscan::Float64
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function calculate_plane_integral(setup::Setup, plane::Plane;
 scan_param::ScanParam=default_scan_param)

 screendim = (round(Int, div(plane.width, plane.wscan)),
 round(Int, div(plane.length, plane.lscan)))
 apdim = convert(Int, div(scan_param.aperture_size, scan_param.aperture))
 screen = zeros(Complex{Float64}, screendim)

 delta = scan_param.aperture_size / apdim
 k = 2pi / setup.lambda
​
 all_aperture_coords = ((x,y)
 for x = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim)
 , y = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim))

 # For stepping, it is important to have a very slight angle at the least.
 ang = plane.angle != 0 ? plane.angle : 0.1
 plane_n, plane_l_n = screendim
 cosine = cos(ang/180*pi)
 sine = sin(ang/180*pi)
​
 all_trans_coords = enumerate(zip(
 LinRange(-cosine*plane.width/2, cosine*plane.width/2, plane_n),
 LinRange(-sine*plane.width/2, sine*plane.width/2, plane_n)))
​
 all_plane_coords = ((i, x, y, j, z)
 for (i, (x, y)) = all_trans_coords
 for (j, z) = enumerate(LinRange(0, plane.length, plane_l_n))
 if i < plane_n && j < plane_l_n)
 all_plane_coords = collect(all_plane_coords)
​
 count = 0
​
 @time begin for (apx, apy) = all_aperture_coords
 if setup.aperture(apx, apy; setup.aperture_kwargs...) < 0.1
 continue
 end
 count += length(all_plane_coords)
 cdist = sqrt(apx^2+apy^2)
 dists = [(fastatan(sum(((s.x, s.y) .- (apx, apy)).^2)/abs(s.z)),
 sqrt(sum(((apx,apy,0) .- (s.x, s.y, s.z)).^2)))
 for s = setup.source]
 sourceterms = [(alpha, exp(-im * k * R)/R) for (alpha, R) = dists]

 Threads.@threads for (i, x, y, j, z) = all_plane_coords
 pointdist = sqrt((apx-x)^2 + (apy-y)^2)
 r = sqrt(pointdist^2 + z^2)
 beta = atan(pointdist / abs(setup.screen_pos))
 term = exp(-im*k*r)/r * sum(
 ((fastcos(beta)+fastcos(alpha))/2 * t
 for (alpha, t) = sourceterms))
 # cos terms are only sometimes required
 K = 1/(im*setup.lambda)

 screen[i, j] += K * term * delta^2
 end
 end
 end
​
 println("calculate_plane_integral: $count iterations")
 (abs.(screen).^2,
 LinRange(-plane.width/2, plane.width/2, plane_n),
 LinRange(0, plane.length, plane_l_n))

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Plane(90.0, 0.04, 0.0002, 30.0, 0.3)

plot_diffraction_on_plane (generic function with 1 method)

end⋅

begin
 #plane = Plane(0, 0.025, 0.025/200, 20, 20/100)
 plane = Plane(90, default_scan_param.screen_size, default_scan_param.screen/2,
 default_setup.screen_pos, default_setup.screen_pos/100)
end

⋅
⋅
⋅
⋅
⋅

function plot_diffraction_on_plane()
 screen, wcoords, lcoords = calculate_plane_integral(default_setup, plane);
 fig = CM.Figure(resolution=(1300, 1300))
 CM.Axis(fig[1,1])
 CM.heatmap!(wcoords, lcoords, log.(screen))
 CM.Axis(fig[1, 2])
 mid = div(size(screen)[1], 2)
 CM.lines!(-log.(screen[mid, :]), lcoords)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

Babinet's principle
Babinet's Principle

Show diffraction for inverted aperture.

Consider that the used aperture is square and usually of very limited length: Major artifacts will stem
from that fact.

plot_diffraction_on_plane()⋅

md"""### Babinet's principle
​
[Babinet's Principle](https://en.wikipedia.org/wiki/Babinet%27s_principle)
​
Show diffraction for inverted aperture.

⋅
⋅
⋅
⋅
⋅

https://en.wikipedia.org/wiki/Babinet%27s_principle

plot_inverse_diffraction (generic function with 1 method)

Plane Wave diffraction
In the limit of far distance of the point source to the screen, we get plane waves.

By directly assuming plane waves, we can calculate faster. D different setup and scan configurations
are used here, too. However, they are linked to the configuration above by default to allow a 1:1
comparison of point source images to plane wave images.

​
Consider that the used aperture is square and usually of very limited length: Major
artifacts will stem from that fact.
"""

⋅
⋅

⋅

using Setfield⋅

function plot_inverse_diffraction()
 setup = default_setup
 aperture = setup.aperture
 setup = @set setup.aperture = (x, y; kwargs...) -> (invertshape(aperture(x, y;
kwargs...)))
 screen, coords = calculate_integral(setup);
 fig = CM.Figure(resolution=(1300, 650))
 CM.Axis(fig[1,1])
 CM.heatmap!(coords, coords, (screen))
 axh = CM.Axis(fig[1, 2])
 axv = CM.Axis(fig[1,2], xaxisposition=:top, yaxisposition=:right)
 mid = div(size(screen)[1], 2)
 CM.lines!(axh, coords, view(screen, :, mid)/maximum(view(screen, :, mid)),
 color=:green)
 CM.lines!(axv, view(screen, mid, :)/maximum(view(screen, mid, :)), coords,
 color=:red)
 fig
end

⋅
⋅
⋅
⋅

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

plot_inverse_diffraction()⋅

calculate_integral_planewave (generic function with 1 method)

plot_diffraction_planewave (generic function with 1 method)

md"""### Plane Wave diffraction
​
In the limit of far distance of the point source to the screen, we get plane waves.
​
By directly assuming plane waves, we can calculate faster. D different setup and scan
configurations are used here, too. However, they are linked to the configuration above
by default to allow a 1:1 comparison of point source images to plane wave images.
"""

⋅
⋅
⋅
⋅
⋅

⋅

function calculate_integral_planewave(setup::Setup;
 scan_param::ScanParam=plane_scan_param)

 screendim = convert(Int, div(scan_param.screen_size, scan_param.screen))
 apdim = convert(Int, div(scan_param.aperture_size, scan_param.aperture))
 screen = zeros(Complex{Float64}, screendim, screendim)

 delta = scan_param.aperture_size / apdim
​
 all_aperture_coords = ((x,y)
 for x = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim)
 for y = LinRange(
 -scan_param.aperture_size/2, scan_param.aperture_size/2, apdim))

 all_screen_coords = ((i, x, j, y)
 for (i, x) = enumerate(LinRange(
 -scan_param.screen_size/2, scan_param.screen_size/2, screendim))
 for (j, y) = enumerate(LinRange(
 -scan_param.screen_size/2, scan_param.screen_size/2, screendim)))
 all_screen_coords = collect(all_screen_coords)
 k = 2pi/setup.lambda
​
 count = 0
 @time begin for (apx, apy) = all_aperture_coords
 if setup.aperture(apx, apy; setup.aperture_kwargs...) < 0.1
 continue
 end
 count += length(all_screen_coords)
 alpha = 0
 Threads.@threads for (i, scx, j, scy) = all_screen_coords
 pointdist = sqrt((apx-scx)^2 + (apy-scy)^2)
 r = sqrt(pointdist^2 + setup.screen_pos^2)
 beta = atan(pointdist / abs(setup.screen_pos))
 term = exp(-im*(k*r))/(r)
 K = 1/(im*setup.lambda) * (fastcos(alpha)+fastcos(beta))/2

 screen[i, j] += K * term * delta^2
 end
 end
 end
 println("calculate_integral_planewave: $count iterations")
 (abs.(screen).^2,
 LinRange(-scan_param.screen_size/2, scan_param.screen_size/2, screendim))
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function plot_diffraction_planewave()
 screen, coords = calculate_integral_planewave(plane_setup);
 fig = CM.Figure(resolution=(1300, 650))
 CM.Axis(fig[1,1])
 CM.heatmap!(coords, coords, (screen))

⋅
⋅
⋅
⋅
⋅

Setup([Source(0.0, -0.0, -30.0)], double_slit (generic function with 1 method), Dict()

ScanParam(0.005, 5.0e-5, 0.04, 0.0004)

 axh = CM.Axis(fig[1, 2])
 axv = CM.Axis(fig[1,2], xaxisposition=:top, yaxisposition=:right)
 mid = div(size(screen)[1], 2)
 CM.lines!(axh, coords, view(screen, :, mid)/maximum(view(screen, :, mid)),
 color=:green)
 CM.lines!(axv, view(screen, mid, :)/maximum(view(screen, :, mid)), coords,
 color=:red)
 fig
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

begin
 # Distance of source, shape function, shape parameters,
 # distance to screen, wavelength
 plane_setup = Setup([Source(z=-80)], double_slit, Dict(), 20, 500e-9)
 plane_setup = default_setup
end

⋅
⋅
⋅
⋅
⋅
⋅

begin
 plane_scan_param = ScanParam(
 # Aperture scan size and scan step, in m, depends on aperture function
 0.005, .005/100,
 # Screen size and scan step in m.
 .025, .025/100)
​
 # Override: use identical plane as above
 plane_scan_param = default_scan_param
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

plot_diffraction_planewave()⋅

